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The method of images is used to  determine the flow perturbation caused by a 
small point source of fluid in a stream containing a vortex sheet, a number of 
vortex sheets, or a continuous two-dimensional distribution of vorticity. Calcula- 
tions are ca,rried out for a variety of such shear flows, to illustrate the range of 
applicability of the method. 

The image source distribution provides an alternative approach to that 
given by Lighthill for calculating small disturbances to a parallel shear flow, 
and suggests a simple physical picture by which to  interpret the complicated 
effects associated with the distortion and stretching of vortex lines. 

1. Introduction 
Much attention has recently been paid to the problem of calculating the effect 

of disturbances to a non-uniform stream of fluid containing vorticity. The 
flow is assumed to be steady and incompressible and viscous effects are neglected. 
The purely two-dimensional case is relatively simple, since the vortex lines 
remain straight and unstretched, but for three-dimensional disturbances the 
distortion of the vortex lines creates problems of an entirely different order of 
difficulty, even if the undisturbed stream is two-dimensional. 

One approach has been to consider that the vorticity is small, and that its 
effect may be represented as a ‘secondary flow’ produced by the convection of 
the vorticity by the ‘primary flow’, that which would occur if stream vorticity 
were absent. Earlier work on these lines has been extended by Lighthill (1956, 
1957a, b )  by making use of the concept of the ‘drift’ of material fluid surfaces, 
discussed by Darwin (1 953). 

A second approach is to study small three-dimensional disturbances to a two- 
dimensional parallel stream or shear layer, without making any assumption 
that the stream vorticity is small. Lighthill ( 1 9 5 7 ~ )  has examined the funda- 
mental disturbance solution, that due to a small point source, and has shown that 
an equation.for the velocity perturbation may be obtained by taking the Hankel 
transform of the Orr-Sommerfeld equation which governs small inviscid dis- 
turbances to the shear flow. The effects of more complicated small disturbances 
may be found by suitably differentiating and superposing such fundamental 
solutions. A basic assumption is that the source causes only a small proportionate 
change in velocity, and consequently the method cannot be applied for shear 
layers in which the stream velocity falls to zero at any finite point. Lighthill 
gives a very full account of the background to the problem, and obtains a great 
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deal of valuable information about the solutions of his equation in various cases. 
In  particular he shows that difficulties as to the nature of secondary flow solutions 
can be resolved by matching the secondary flow at large distance from an 
obstacle to the form of the small-disturbance solution at small distance. 

This paper describes an alternative theory to Lighthill’s for deriving the per- 
turbation due to a small source. The shear layer is replaced by a number of layers 
of uniform flow, separated by vortex sheets. It is shown that the effect of the 
vortex sheets can be represented by a series of image sources, and that when the 
number of sheets tends to infinity and their spacing tends to zero a continuous 
image source distribution is obtained, applicable to the continuous shear layer. 
The restrictions on the validity of the equations are precisely the same as in 
Lighthill’s approach, and the majority of the chief deductions of each method 
of analysis can be obtained by the other, in complete accord with one another in 
all cases. 

However, the development of this alternative theory justifies itself on a 
number of grounds. Each of the theories may serve to stimulate development 
in the other, and there are important results on each side which have not yet been 
proved by means of the rival theory. In  addition, the image system is helpful in 
indicating a simple physical model of the flow in a disturbed shear layer. It is 
not easy to visualize in detail the effect of the stretching and bending of vortex 
lines, and meditating on the image source distribution may lead to a better 
understanding of phenomena for which untutored physical intuition provides no 
clear guide. 

2. Single vortex sheet 
Consider an unbounded volume of homogeneous incompressible fluid such 

that, with Cartesian co-ordinates (5, y, z), the fluid in y > 0 (the upper region) 
has uniform velocity U, in the x-direction and in y < 0 (the lower region) haa 
uniform velocity U, in the same direction. Thus y = 0 is a vortex sheet of strength 
U, - U,. Suppose that there is a three-dimensional point source of fluid of small 
strength M at the point 0 in the lower region, at a distance h from the interface. 
Let us try to find the effect of this source by use of the method of images. 

We postulate that the flow perturbation in the lower fluid is that due to M 
itself together with a source m, (i for image) at 0,, the mirror image of 0 in the 
interface y = 0, and that the perturbation in the upper fluid is that due to a 
source rnt ( t  for transmitted) at 0. There can of course be no source at 0, for the 
flow in the upper region, since there is no actual singularity at this point. This 
representation will be legitimate only if the necessary conditions at the interface 
can be satisfied by a suitable choice of the values of mi and m,. These conditions 
are that the pressure shall be continuous, and that continuity shall be satisfied, 
which requires that the displacement of the interface in the y-direction be the 
same in the two regions. 

Let the perturbation velocity at (z, y, z )  be (u, v, w) and suppose that the source 
&f is so small that on the interface squares and products of u, v and w may be 
neglected. Then by Bernoulli’s equation the first of our conditions requires that 
over the interface, for equal increments of pressure in the two regions, Uouo = U,%, 
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where the suffixes 0 and 1 indicate the lower and upper regions respectively. 
For small disturbances this condition may be applied on y = 0, the undieturbed 
interface, and it is satisfied by our image source distribution provided that 

U,(M+mi)  = U,mt. (2 .1)  

At a fixed position the displacement of a streamline due to a small source is 
inversely proportional to the stream velocity, and hence our second condition is 

(2 .2)  
satisfied if M - m i  m, 

An alternative method of obtaining (2 .2 )  is to interpret the continuity condition 
as requiring that the flow directions in the upper and lower fluids shall be com- 
patible at the interface, and so v/U must be continuous. 

-- _ -  
uo Ul' 

From equations (2 .1 )  and (2 .2)  we obtain 

Certain special forms of these expressions are of interest. For a free surface - 

at y = 0, U, = 0 and we have 
m t = - M M ,  -'=o- 

This is a familiar result, used in the theory of wind-tunnel interference. The c a e  
of a solid boundary at y = 0 is obtained by putting U, = co, since the upper fluid 
then has infinite momentum and so no displacement of the interface can occur. 

mi = M ,  m t =  0. (2.5) 

This value of mi is well known from the elementary theory of the method of 
images, and is valid no matter how large the value of M .  

An immediate practical application of the type of analysis we have been using 
concerns the effect at large distance of a small point source M at the origin in a 
shear layer of limited width. Suppose that the stream velocity varies from U-, 
to  U,, the stream velocity at the level of the source being U,. For numerically 
large values of y the shear layer may be treated as a single vortex sheet. Above 
the layer the flow perturbation is that due to a source m,, and below the layer that 
due to a source m-l, each source being at  the origin. As in (2 .1) ,  pressure con- 
tinuity along the vortex sheet requires 

We Ohen have 

The fluid from the source flows downstream to form a tube of cross-sectional 
area MIU,, and displaces the surrounding stream surfaces outwards by this 
amount. Equating this to the displacements in the upper and lower fluids due to 
the effective sources, we have 

M m, m-, - =-+-, u, 2u,  2u-, 

since in each case only half the flux from the source enters the appropriate region. 
This equation takes the place of (2 .2) .  From equations (2 .6)  and (2 .7)  we obtain 
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By use of his Hankel transform method, Lighthill ( 1 9 5 7 ~ )  obtained the same 
result, though with greater labour, and he also found the effective displacements 
of the sources m, and m-, from the plane y = 0. The present analysis, which was 
briefly mentioned by Lighthill, has no obvious extension which would enable 
these displacements to be calculated. 

3. Multiple vortex sheets 
We now consider a flow in which there are a number of vortex sheets in planes 

y = constant, separating layers in each of which there is a uniform stream in the 
x-direction. By taking the vortex sheets to be sufficiently numerous and closely 
spaced we shall then be able to deduce results applicable to a shear flow, with 
continuously varying velocity. 

Assume that the vortex sheets are spaced at equal intervals 6 and that the 
perturbing source M ,  at y = 0, is at a point midway between two of the sheets. 
Let U, be the stream velocity in the rth layer, with centre at y = r8. In  this rth 
layer, we shall seek to represent the flow perturbation as that due to a set of 
image sources m,.,,, s = 0, f 1, k 2, . . . , where s indicates the layer in the centre 
of which the image is located, all the images being on the line in the y-direction 
through the source M .  

The conditions which must be satisfied at the interface between the rth and 
(r -I- 1 )th layers are that the pressure perturbation end the interface deflexion 
shall be consistent on the two sides, precisely as for equations (2.1) and (2.2). 
Furthermore, since sources at different distances produce effects which vary in 
different manners over the interface, the set of sources at each particular distance 
must satisfy the conditions separately. Thus for the sources at a distance (k - +) S 
from the interface we require 

K(%,?'+k + %,v-k+l) = q+l(mr+l ,r+k + mr+l,r-k+l), (3.1) 

Eliminating m7+1,r-k+l and mr,,.+k, respectively, we may replace (3.1) and (3.2) 
by the equivalent pair of equations 

(U,+12 + qZ) %,r+k = (U,+? - K2) m,., ,.++1+ W+l U,%+l,,.+k, 

(U,+12 + U,z) %+1,7-k+l = 2U,+l qm7,,.-&+1- (U,+lZ - q2) mr+l,r+k. 

(3.3) 

(3.4) 

In  addition, from the known presence or absence of sources in the layers them- 
selves, 

mo,o = M ,  and mr,,. = 0 (r $: 0). (3.6) 

Equation (3.5) gives the terms of the array m,.,s on the principal diagonal, and 
in equations (3.3) and (3.4) the terms on the right are (k - 1) steps from the princi- 
pal diagonal while the terms on the left are k steps away. Hence the calculation 
of the terms m,., may be carried stage-by-stage away from the principal diagonal, 
by taking successively k = 1,2 ,3 ,  .... 

It is possible to obtain a relation between four neighbouring image sources 
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by elimination between (3.3) and the forms of equations (3.3) and (3.4) with r 
replaced by r - 1 and k by k - 1. The result is 

(3.6) 
This equation may also be used to calculate successively the sources m,,#. 

Certain general points are worth attention. As is readily proved from (3.3) 
and (3.4) by induction over k, m , ,  depends only on the terms on the principal 
diagonal between mu+ and mv,v inclusive, where u, v = r It: Ir - sI ; indeed it is a 
linear combination of these terms. It follows from (3.5) that 

Thus for the flow in any layer there are no image sources nearer than the source 
M itself. A n  immediate consequence of (3.3) and (3.4) is that if U, = q+l, then 
m,,, = mr+l,s, and hence as expected the image pattern is the same in the two 
layers. Near the principal diagonal non-zero images occur only for small values 
of r ,  and their strengths depend on the distribution of stream velocity near M 
itself. It is interesting to compare this with one of Lighthill's main deductions; 
that when expanded in powers of distance from the source the first-order per- 
turbation is just the source flow itself, and the second-order perturbation depends 
only on the velocity and shear at y = 0. 

m , ,  = o for Ir-sl < r .  (3.7) 

4. Continuous velocity distribution 
For a flow in which the stream velocity U in the x-direction is a continuously 

varying function of y, equations for the image source distribution representing 
the effects of a small source M at the origin may be deduced from the analysis 
of the last section, by taking the layer thickness 6 to  be small, and replacing 
V,  and m ,  , by U ( y )  and m(y, 8). Thus at the point (x, y, z )  the perturbation to the 
flow is determined by a source distribution along the y-axis, of strength per unit 
length m(y, s) at (0, s, 0). 

In  equations (3.3) and (3.4) we replace V,+l- U, by U'6, where the dash 
denotes differentiation, and ignore P. Each equation leads to 

To obtain an equation for m(y, 8) alone, replace s by 2y - s in (4. l), giving 

am U' 
- (y,2y-s)+-m(y,s) = 0. aY U 

Here the first term is to be interpreted as the value of @lay) m(y, s) at the point 
(y, 2y- s) in the ys-plane. Differentiation of (4.1) with respect to y and s respec- 
tively gives 
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and substitution in (4.3) from equations (4.1), (4.2) and (4.4) leads to the required 
equation for m(y, s) 

(4.5) -+2-+ a2m (U' _ _ _  U")am ---m U f 2  = 0 a2m 
ay2 ayas u u' ay u= 

This is the fundamental equation for the source function. It may also be deduced 
directly from (3.6). We are interested in solutions for which m = 0 on the line 
y = s, except for a singular source M at y = 0, i.e. 

(4.6) 

FIGURE 1. The regions I and I1 in the ys-plane in which the image 
source distribution m(y, 8)  is non-zero. 

Equation (4.5) is a hyperbolic equation, with characteristics s - 2y = constant 
and s = constant, and we may conveniently introduce characteristic variables 

The effects of the source M are therefore confined to the two regions I ( f  > 0, 
71 > 0) and I1 ( E  < 0 , ~  < 0) ,  as shown in figure 1. This is as was to be anticipated 
from (3.7). The equation (4.5) may be solved separately for the two regions, 
though the solutions are connected by (4.1), which relates conditions at a point 
in I to conditions at a point in 11. 

As regards the boundary conditions which apply along the boundaries E = 0 
and 71 = 0, it is clear from (4.1) with s = 0 and (4.6) that there is a singular source 
of constant strength MS(s) along the whole of the y-axis, since m is finite on the 
line s-2y = 0. Consider next (4.1) with s constant, equal to 2y, > 0, and inte- 
grate with respect to y over a short interval including y = y,. Since m = 0 for 
y > y,, the left-hand side gives -m(y,, 2y1). The right-hand side gives 

E=s-2y, q = s .  (4.7) 
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The required boundary condition at E = 0 in I is therefore 

U' 
m(Y, 2Y) = BJfy (Y) (7 ' 0). 

A similar calculation shows that the corresponding boundary condition at 
E =  OinII i s  U' 

NY,2Y) = - B M y ( Y )  (7 < 0). (4.9) 

The boundary conditions at 7 = 0 are now given by a further application of 
(4.1). In  I, y < 0 on s = 0 and hence we have 

(4.10) 

on making use of (4.9), as is appropriate since the point (y,2y) is in 11. The 
corresponding condition at 7 = 0 in I1 is 

(4.11) 

These conditions (4.8)-(4.11) are sufficient for the complete solution of (4.5). 
To be precise, they should be interpreted as giving the limiting values as the boun- 
dary is approached from within the region in question, since m is discontinuous 
or singular on the boundary. It is emy to write down integrated forms of (4.10) 
and (4.11) which give m(y, 0) directly, since m(0,O) is known from equations 
(4.8) and (4.9), but the forms given are usually the most convenient. 

Before proceeding further we must refer to an important point in regard to 
the velocity field which corresponds to the source distribution. For uniform flow 
with velocity discontinuities, as considered in 5 3, the perturbation velocity 
presents no difficulties, being merely that due to the set of image sources appro- 
priate for the particular layer. But for a continuously varying stream the velo- 
city field due to the source distribution m(y, s), - 03 < s < 03, is not the whole 
perturbation velocity. The stream surface at (2, y, z )  has been displaced a distance 
d,  say, in the y-direction from its undisturbed position, and in consequence the 
stream velocity at (2, y, z )  is that at (x, y - d, z )  in the undisturbed flow. Thus 
there is an additional perturbation velocity in the direct ion of amount 
u, = - dU', since d is small for a weak source. Now we may write 

since the perturbation is small and hence 

au, u' 
vdx, - =-- U 

U' 
=-- dm ax 

(4.12) 

(4.13) 

The velocity given by (4.13) makes a contribution to the continuity equation 

au av aw 
ax ay a Z  
-+-+- = 0, (4.14) 
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which must be satisfied everywhere except at the origin. This at first looks 
unpromising, but it is soon apparent that the velocity field due to the image 
sources themselves does not satisfy (4.14). The flow due to a fixed set of sources 
would of course do so, and the displacements which determine au/ax and aiolaz 
do not involve any change in the source distribution. But a displacement in the 
y-direction does cause the image system m(y, s) to alter, and so av/ay contains an 
extra, unbalanced, term,. We can show that this term is precisely that needed to 
cancel the contribution from (4.13). 

Due to the image sources, the velocity in the y-direction at (5, y, z) is 

(4.15) 

where p is the distance between the points (0, s, 0) and (z, y, z). The unbalanced 
term in av/ay is that due to the variation of m(y, s), namely 

U' 
U 

= -v (4.16) 

by (4.1), where s1 = 2y-s and p1 is the distance between (O,sl, 0) and (x, y, 2). 

This is the required result, and confirms the consistency of our equations. 
It may be remarked that a11 our analysis may be applied immediately to the 

simpler problem of a purely two-dimensional disturbed flow. If the point 
source M at the origin is replaced by a line source of strength M per unit length 
along the z-axis, the strength of the image source distribution m(y, 8) has precisely 
the same form aa for the three-dimensional flow with the same stream velocity 
U(y), since all the conditions used in deriving the equations for m(y,s) are un- 
changed. The velocity field is of course Werent, since the velocity due to each 
source element falls off like the inverse first power instead of the inverse square 
of the distance from the source. 

A further point of interest concerns the nature of the fluid emitted from the 
source. In  the discrete-layer model of the shear flow described in 0 3, the fluid from 
the source emerges into a layer of uniform stream velocity, and naturally is itself 
irrotational. The source is not affected by the limiting process in which the 
layers become increasingly narrow and numerous, and so in the contrinuous- 
velocity flow the source fluid is still irrotational. In  two-dimensional perturbed 
flow with constant verticity wo, this is not always assumed to be the case. It is 
then often convenient to write down a solution for the velocity field which 
has vorticity wo everywhere, including the regions occupied by fluid which has 
emerged from a source. Such solutions are therefore not immediately comparable 
with the results of the present theory. 

In  this paper we shall make no further reference to the case of purely two- 
dimensional disturbed flow. The calculation of the corresponding velocity field 
presents no new difficulties. 
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5. Special solutions 
Further progress can be made only with more definite assumptions about the 

form of the stream velocity distribution U(y). We shall here concentrate chiefly 
on simple shear flow, for which U = a(y+ yo), but first we shall briefly investigate 
what other velocity distributions are tractable. 

First, we may note that (4.5) is unchangedif U(y) is replaced by U*(y) = I/U(y), 
and hence the same general solution m(y,s) is applicable. The boundary con- 
ditions (4.8) and (4.9) change sign, but not conditions (4.10) and (4.11), and SO 

the particular solution required will be different. 
The form of (4.5) is simplified in three cases, These are when the coefficient 

of m is zero, when the coefficient of amlay is zero, and when the equation can be 
immediately integrated with respect to y. We shall examine each of these in turn, 
and shall find that the special cases considered by Lighthill ( 1 9 5 7 ~ )  will all be 
included. 

The term (U'2/U2) m in (4.5) is small compared with the other terms when 
the relative velocity change through the sheer layer is small. If this term is 
neglected (4.5) becomes 

on introducing the characteristic variables (4.7). Hence 

am U' U' 
aY 
- = F I q E )  = yF(s-2y), 

where P(5) is an arbitrary function. In  region I, (4.10) shows that 

U' 
JY - 2Y) = +My (Y). 

Equation (5.2) can now be integrated with respect to  y to give 

From (4.8) the arbitrary function G(s) satisfies 

U' 
G(2Y) = * M Y  (Y). 

The solution for region I is therefore 

U' 
U m = *M - (is) - +M (5.4) 

I n  region 11, the boundary conditions (4.9) and (4.11) show that the required 
expression for m is that of (5.4), with the sign changed. 

The solution may be improved by using (5.4) to approximate to the neglected 
term in (4.5). The integration to find the extra contribution tom is quite straight- 
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forward, and the boundary conditions have already been satisfied exactly. The 
result for region I is 

In  region I1 the sign is changed. The process of successive approximation may be 
repeated as often as required. 

Lighthill ( 1 9 5 7 ~ )  considered a shear layer with what he called 'small velocity 
spread', and obtained the equivdent of the first term of (5.5) in the form 
m = +MU'(as)/U(O). A direct application of the formulae of $ 2  leads to this 
result, and indeed also to the fuller result (5.5), and is of interest as indicating 
the physical significance of the successive terms in the solution. 

Suppose that the shear layer is replaced by N layers of uniform flow, each of 
thickness 6, separated by vortex sheets each of strength O(E)  U, where B is small. 
From (2.3) the transmitted source at one of the vortex sheets is M{1+ O ( E ~ ) } ,  and 
hence from the source at the origin to the observation point (2, y,z) the trans- 
mitted source is changed to M(1+ 0(Ne2)} .  The shear layer may be considered 
to be the limiting case where 6 + 0, N + 00 and E + 0, the total velocity change 
of magnitude O(NE)  U remaining fixed. The source M is therefore transmitted 
unaltered. From (2.3) the image source mi due to a velocity discontinuity k d J  
passing through (0, 1, 0), where Z > y > 0, is m, = M{ke+ 0(e2)} .  These images 
sources m, are spaced at intervals 26 along the y-axis, and so the source density 
at (0,21,0) is approximately Mks/26. Now as 6 + 0, ks/6 -+ (U' /U) (Z), and hence 
the sources m, combine to form the distribution m(y,s) = @f(U'/U)(+s), 
s > 2y, exactly as given by the first term of (5.5). For 0 < 1 < y there is no image 
source mi and for Z < 0 there is agreement in region 11, as is seen most ewily by 
reversing the direction of the y-axis. 

The primary images m, which are appropriate at (0, t ,  0) will have secondary 
images in the vortex sheet pasing through this point, provided that they are 
on the aame side of the sheet a.s the observation point (2, y, z). The total strength 
of the primary images is O(NE) M ,  and hence the set of secondary images in the 
N discontinuities has total strength O(N2s2) M .  If the relative velocity spread 
across the layer is small, N E  is small, and only the primary images are of import- 
ance. This is in accord with Lighthill's result. The source density due to the 
secondary images may be shown to agree with the second term of (6.5),  by an 
extension of the analysis given above. That the velocity discontinuities are 
appropriately situated is seen by constructing diagrams as shown in figure 2, 
considering the image sources to be due to reflexions in the vortex sheets. Further 
diagrams and calculations check that the later terms of (5.5) correctly represent 
the effects of third- and fourth-order images. The physical interpretation of the 
terms in the series solution (5.5) is thus well established. 

If the velocity is uniform outside the range -a  < y < b, the primary images 
are clearly confined to  the interval - 2a < 8 < 2b, and the secondary images are 
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confined to - 2(a+ b )  < s < 2(a+ b),  for otherwise the corresponding integrand 
in (5.6) is nowhere non-zero. I n  each case there are no sources in the range 
(s - yI < y. Similarly, the third-order images are confined to 

-4a-2b < s < 2a+4b, 

and the fourth order to - 4(a + b )  < s < 4(a + b) .  These results are also readily 
deduced from diagrams like those of figure 2. +sp-; S Mypl;p-; 

M 
2t- s js - _---- 

(ii) (iii) S (9 

FIGTJRE 2. IlIustrations of  the location of primary and secondary images of the point 
source M at  the origin, ae observed at  P(z, y, 2): (i) a primary image with 8 > 2y > 0; 
(ii) a primary image with 8 < 0; (iii) a secondary image. -, paths of reflexion; 
-___- , vortex sheets at which reflexion takes place. 

In  the second case we are to examine, the coefficient of amlay in (4.6) is zero. 
ThisoccurswhenU’/U = U”/U’,i.e.whenU = aeAv,whereaandhareconstanta. 
This case proved easy to solve by Lighthill’s method. Equation (4.6) reduces to 

which in terms of the variables ( 6 , ~ )  of (4.7) becomes 

a2nz 
at a7 

4 - + h 2 m = 0 .  (6.7) 

The boundary conditions (4.8) and (4.10) in region I give 

M 4 7 )  = QMh, m(E, 0) Wh(1  - 3 w .  (6.8) 

The required solution of (5.7) is readily deduced from the form of solution given 
by Courant & Hilbert (1937, ch. v, $4.3). It is 

JO(hE*7*) - f*7-*J1(@79 M h =  
2m 

= Jo{h(s - 2y)) y*} - (s - 2 y ) )  s-)J,{h(s - 2y)4 s”. (5.9) 

For region I1 the boundary conditions (6 .8)  have their signs changed, and re- 
membering that g and 7 are negative the solution is seen to be 

2m 
= - J o { 4  -tP (--7)*}-- ( - E P  ( -7)-*J1{4 - E l *  (-17)9 
= -J0{h(2y-s)*( - ~ ) * ) - ( ( 2 y - ~ ) * (  - s ) - * ~ { A ( ~ ~ - s ) * ( - s ) * } .  (6.10) 
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The velocity distribution corresponding to this source distribution may be 
worked out by precisely the same techniques as those employed in $6, and the 
author has confirmed that the formulae given by Lighthill ( 1 9 5 7 ~ )  are obtained, 
on making use of standard integral relations between Bessel functions. 

The third special case is that in which (4.5) is immediately integrable with 
respect to y. For this to be possible 

U'2 

and hence (5.11) 

This is satisfied if U" = 0, which is simple shear flow U = a(y+yo).  If U" + 0, 
(5.11) multiplied by U'lU" may be integrated to give 

log(UU'/U") = constant. 
A further integration gives 

U' = c+dUZ, 

(5.12) 

(5.13) 

where c and d are constants. The integral of this equation takes one of the forms 
U = a(y+y,), a / (y+yo) ,  atanb(y+yo), atanhb(y+yo), acothb(y+yo). For all 
these velocity distributions the integration of (4.5) proceeds in a manner closely 
analagous to that for simple shear flow, to be treated in $6. It may be verified 
that for the stream U = a tanh b ( y  +yo) the solution in region I is 

sinh b( 2y - s + yo) 
sinh byo sinh 2b(y + yo) ' m = M b  (5.14) 

in region I1 the sign being reversed. By suitable modifications of the constants a 
and b the solutions for the other streams listed above may now be written down. 

It may be argued that some of these velocity distributions are unrealistic, in 
view of the occurrence of points at which the velocity changes sign or becomes 
infinite. However, it is possible to consider that a form of velocity distribution 
holds only over a limited range of y, as will be seen in $ 7. 

6. Simple shear flow 
For simple shear flow, U = a(y + yo) and equation (4.5) becomes 

This may be integrated immediately with respect to y to give 

In  terms of the variable ( 6 , ~ )  of (4.7) this may be written in the form 
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The boundary conditions (4.8) and (4.10) in region I are 

and by applying (6.4) to equation (6.3) on the line E = 0 we see that G(8) = 0. 
We can therefore integrate (6.3) with respect to 7 to obtain 

4 Y  + Yo) = JYE)  = m - 2Y). (6.6) 

FIQVRE 3. Location of the image sources m(y, 8 ) ,  and notation used in 
calculating the velocity components. 

On the line s = 0, (6.5) gives 
M M  - M(2Y + YO) m(y, 0) = -- 

2(Y +YO) - 2Yo(Y + Yo) 

M(2Y - +YO) 

2Yo(Y + Yo) - 

Yo 
since, from (6.4), m(0,O) = +M/yo. Hence from (6.6) 

m =  

In  region11 the signis changedinequations (6.4) and ( 6 4 ,  and hence 

m = -  M(2Y - +Yo) 
2Yo(Y + Yo) * 

(6.9) 

Note that (6.8) is equal to the limiting value of (5.14) as b -+ 0. 
Consider now the velocity perturbation at  the point P(z, y, x )  due to a source M 

at the origin. The image source strength m(y, s )  at  (0, s, 0 )  is given by (6.8) and 
(6.9). For > 0 the situation is as shown in figure 3. It is convenient to introduce 
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co-ordinates 8 and + as shown, to describe the positions of the image sources in 
regions I and I1 respectively. Thus 

8 =s-y, + = y-8. (6.10) 

In  terms of these, equations (6.8) and (6.9) become 

(6.11) 

Pairs of points at which 6 and + are equal are symmetrically situated with re- 
spect to P, and hence the sources corresponding to the terms 1 and - 1 in (6.11) 
have no net effect on u and w, and equal effects on v. Similarly, the other terms of 
(6.11) have no net effect on v, but equal effects on u and w. 

The contribution to  v from the source distribution (6.11) is 

(6.12) 

where p = (x2+Ba+za)* is the distance of the image source from P, and 
r = (x2+ y2+z2)h. There is also the velocity due to the source dl itself, giving 
vM = Xy/(47rr3). The total y-component of the perturbation velocity is therefore 

Similarly the x-component due to the source distribution is 

Mx 
~ ~ Y O ( Y  +  YO)^' 

(6.13) 

(6.14) 

the integral being of the same form aa that occurring above, and zc, = Mx/(47rr3). 
We have also to include the convective component u, as given by (4.13). This 
equation shows that 

3% V 

ax ~ + Y O  

-=--=- 

and hence u, = - { x~ --log(r+z)+f(y,z)) 1 

4n(y + yo) (Y’ + za) T yo 
(6.15) 

The arbitrary function f(y, z )  presents difficulties, since log (r + z) becomes 
logrtrithmically infinite at x = f co. If we require u, to be zero at x = 0, then 
we should writef(y,z) = (1/2yo)log(y2+z2), and 

u = UM+u#+uc 
1 + X XY 

Yo(Y +Yo) r - (Y + Yo) (Y2 + z2) r 2Yo(Y + Y O )  

Finally, w has precisely the same form &s u, except that no convective term is 
present, and so 

(6.17) 
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These velocity components are in accord with those given by Lighthill (1967 c). 
Although they have been derived only for y > 0, a consideration of the effect 
of reversing the direction of the y-axis shows that the formulae ad hold unchanged 
for y < 0. 

Lighthill described the infinity in u as ‘an extremely discouraging feature’. 
The author’s view is rather more optimistic. The occurrence of the infinity em- 
phasizes the artificial nature of the assumption that the uniform shear extends 
indefinitely in all directions. In  practice there are always constraining boundaries 
to limit the drift of streamlines. For that is what causes the trouble in (6.16). The 
displacement d in the y-direction of streamlines between x = 0 and x = 00, 

as given by (4.12), is logarithmically infinite. This is nothing peculiar to shear 
layers; the same is true for the flow with circulation past a cylinder. But it does 
indicate that in any attempt to make measurements of the Pitot-tube displace- 
ment effect the nature of the boundaries to the shear flow, however distant, has a 
vital influence. In  some cases (6.16) could probably be used quite effectively 
by taking given undisturbed conditions to be attained not at x = -00 but 
at some plausible position x = -zo. If the shear flow terminates at planes 
y = constant, the modified image source distribution may be determined as 
shown below. 

A more serious objection to placing reliance on the solution obtained in this 
section is that the stream velocity falls to zero at y = -yo. This invalidates the 
basic assumption on which the whole method of analysis is based, starting from 
equations (2.1) and (2.2). Indeed we have no real reason to suppose that our solu- 
tion is reliable anywhere, since the true source distribution m(y, s), if one exists, 
might well obey conditions at y = -yo which are quite different from those 
obeyed by the solutions (6.8) and (6.9). 

7. Bounded shear flows 
In  flows occurring in practice it will happen only rarely that the velocity dis- 

tribution U(y) in the undisturbed shear layer can be considered to have the same 
simple analytic form for all y. Either the flow will be terminated by solid or free 
boundaries, or the velocity will become uniform outside a certain range of values 
of y. The analysis given in this paper can be extended to determine the image 
source distribution for streams in which the form U(y) changes abruptly at some 
value y = - yl, the expressions for U(y) in both the regions y > - y1 and y < - y1 
being ones for which solutions have been found. A discontinuity in U(y) at 
y = -yl is permissible. 

For simplicity we shall here examine in detail only the stream consisting of 
simple shear flow U = a(y +yo) in the region y > - yl and uniform flow U = Uo 
in y < -yl. There is then a velocity discontinuity Ul - Uo at y = - yl, where 

The regions of the ys-plane in which m(y, 8) has to be determined are shown 
in figure 4. In  A and A* the source distributions are given by equations (6.8) 
and (6.9), since the hyperbolic nature of (6.1) shows that the effects of the change 
at y = - yl cannot extend beyond the lines 2y - s + 2y1 = 0 and s + 2y1 = 0. 
From (4.1), m is independent of y for y < -yl, since U is constant, and in 

u, = a(y0 - Yl). 



576 M. B. Glauert 

particular m = 0 in C*. The relations which hold across the line y = -yl are 
now given by equations (3.3) and (3.4) as 

(~12+Uo2)~(-Y, ,& = 2uluom(-Y,,s)B, (7.1) 

m(-y,,2y-s), = am(-Yy,,4n, (7.2) 

where a = (U,-U12)/(Uo2+U12). We also see from (3.4) or (2.3) that there is a 
concentrated source aMG(s + 29,) for y > - yl and hence, as for (4.8) and (6.4), 
m has a discontinuity iaM(y+y,)  on passing from A t o  B across the line 
2y-S$-2y1 = 0. 

FIGURE 4. Undisturbed velocity distribution in a sheer layer bounded at y = -yl, 
and the regions of the y8-plme in which m(y, 8 )  hee to be determined. 

We require a more general solution of (6.3) than the form (6.8). If in (6.3) we 
for aonvenience replace the arbitrary function G(s) by 4G"(s) the equation 
becomes 

(7.3) 
a 

-{m(Y+Yo)) = (7--t+2YO)G"(7), 
a7 

which gives on integration 

m(Y + Yo) = (7 - E+ 2Yo) @(7) - G(7) + m). (7.4) 

Reverting to the variables (y, 8)  we obtain as the general solution of (6.3) 

The solution (6.8) is given by P = iM(2y-s  +yo)/yo, G = 0 and also by P = 0, 
G = i M ( s  -k yo)/yo. The first of these forms of solution may be said to be propa- 
gated in the 7-direction (along lines = constant) and the second in the 6-direc- 
tion (along lines 7 = constant). It is a useful fact that either form is appropriate 
for unlimited simple shear flow. 
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I n  the present problem the solution in region A may be taken to be in the 
7-direction, and consequently the same must be true in B, so that there 

The boundary condition (7.2) combined with (4.1) gives 

am a 
-(--y1,4 = ---m(-yl,d, 
aY Yo - Y1 

and on substituting the form (7.6) we obtain at once 

(7.7) 

provided that a =/= 1. The discontinuity of m on 2y - s + 2y1 = 0, as found above, 
enables the constant Po to be determined and gives us the final result for region B 

Equation (4.2) now shows that in B* 

When a = 1, (7.8) is replaced by P = Po and we obtain 

(7.11) 

inbothBclndB*, aswould be given byputtinga = 1 inequations (7.9) and (7.10). 
I n  region C equations (7.1) and (7.9), and the condition that m is independent of 
v, show that 

(7.12) 

and from (2.3) there is in addition a concentrated source 

for y < - yl. 
When u = 1 , Uo = 03. Such a stream could not be deflected by any finite pres- 

sure force, so the solution applies for a solid wall at y = -yl. Other cases of 
practical interest are u = 0, corresponding to no discontinuity of stream velocity 
at y = - yI but merely a change from uniform shear to constant velocity, and 
a = - 1, for which the fluid in the region y < - y1 is at rest. Since - 1 < u < 1 
the image source strength in both B and B* decreases exponentially with dis- 
tance from the origin (except when a = l) ,  provided that yo > yl, i.e. provided 
that there is no plane of zero stream velocity in the physical flow. If yo < y1 fhe 
sources increme exponentially with distance, which again emphasizes the un- 
reality of solutions for streams in which the velocity passes through zero. 

37 Fluid Mech. 9 



578 M .  B. Qluuert 

The calculation of the velocity fields corresponding to  these source distribu- 
tions is a straightforward extension of that for an unbounded simple shear flow, 
although unless a = 1 the results cannot be expressed in terms of elementary 
functions. For a = 1, with a solid wad at y = -yl, the image source distribution 
in terms of the co-ordinates 8 and q5 of (6.10) is given by 

(7.13) 

The integrations to  find the velocity components are so similar to  those of $ 6  
that it will be sufficient to quote the results. 

+- +-log-]), 1 T - x  (7.14) 
-[-) rl(rl-x) Po rl-x 

v = -  (7.15) 

where rl = (x2 + (y + 2yJ2 + z2}* is the distance from P to the concentrated image 
source M at 8 = - 29,. The term in 2~ enclosed in square brackets represents the 
convective component u,, and the arbitrary function of y and z appearing in it 
haa been chosen so that u, + 0 as 2 +- - 00. The difficulty in this respect for an 
unlimited shear layer no longer arises, for any value of a. 

The value (u~ ,vW,ww) of the perturbation velocity at the wall is found by 
(7.15) and (7.16). 

(7.17) 

8. Shear flow in a channel 
When the shear flow is bounded both above and below, at y = yz and at 

y = -yl, an infinite series of regions in the ys-plane has to be considered, cor- 
responding to multiple reflexions in the boundaries. The regions are periodic in the 
s-direction with period 2(y1 +yz), as illustrated in figure 5. For simple shear flow 
U = a(y+yo)  with solid boundaries at y = yz and y = -yl the image source 
distributions in A and B are given by equations (6.8) and (7.11). The source 
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distribution in C may also be deduced from (7.11) by reversing the direction of the 
y-axis and replacing yo by -yo and y1 by y2. We find that in C 

and we also see that there is concentrated source M6(s - 2y.J for y < y2. Since 
the solution in the whole region made up of A,  B, C and D must be expressible 
in the form (7.5), and so is the sum of solutions propagated in the fl- and 7-direo- 
tions, 

m,+m, = mg+mc, (8.2) 
which shows that in D 

FIUURE 6 .  Undieturbed velocity distribution in a shear layer bounded at y = -yl and 
at y = yz, and the regions of the ys-plane in which m(y, 8)  hrts to be determined. 

The regions D and A* are seen from figure 5 to  be geometricaJly identical, and 
furthermore a comparison of equat.ions (6.9) and (8.3) shows that the sourm 
strengths at corresponding points are equal, since the point (y, s) in D corresponds 
to the point (y, s - 2y, - 2y,) in A*. Since conditions in D completely determine 
the source distribution in more distant regions it is clear that m is periodic in the 
s-direction, with period 2(y1 + y2); in particular m = 0 in regions E ,  F, E* and F*. 
This is not true if the boundaries at y = -yl and y = y, are not solid, for then 
the source strengths in B and C vary exponentially with s, as shown by equations 
(7.9) and (7.10). 

The evduation of the velocity components corresponding to the periodic 
source distribution is aided by a formula derived by Olver (1949) and Reuter 

37-2 
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(1949) which expresses the potential of an infinite row of point sources as a series 
of Bessel functions. The formula states that if h(n) = (x2 + (y - n)*}-*, then 

W W 

2 h(n) = 2 KO(2ntx) cos (2n ty )  +constant. (8.4) 
- W  t = l  

Since Ko(z) N (nl2.z) e-z a,s z -+ 00, the series converges rapidly unless x is very 
small. This formula and its derivatives with respect to x and lead to the following 
results : 

To these velocity components must be added the convective velocity component 
u,, given by (4.13), which requires numerical integration. 

At values of (x2 + 22)) which are not large enough for the expansions to converge 
satisfactorily, the velocity components due to the nearest regions in the ys-plane 
may be calculated directly, and the source distribution in more distant regions 
may be replaced by a smoothed-out source of constant strength in the s-direction. 

The bounded shear flows treated in this paper are only samples of the many 
types which may be successfully studied by use of the method of images. The 
techniques developed here and simple extensions of them lead to useful quan- 
titative results in many other cases of interest, but the number of possible con- 
figurations is so large that there seems little point in attempting to compile a 
comprehensive list of solutions. 
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